Abstract

Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth’s tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2–12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode–seed size–adult size combinations can drive contrasting regional responses to defaunation.

Introduction

Anthropocene defaunation is amongst the most pervasive drivers of Earth’s ongoing biodiversity crisis1,2,3,4. The rates at which the tropics are losing vertebrate species are amongst the highest globally, with larger species being particularly vulnerable to population declines and extirpations1,5,6,7. Declines of large vertebrates can have widespread, cascading effects on community- and ecosystem-level processes, because smaller organisms are often unable to perform the ecological roles of larger vertebrates1,2. In tropical forests, where the majority of tree species depend on vertebrate frugivores for seed dispersal8, theory and empirical evidence indicate that defaunation can substantially alter the composition of tree communities, through effects on seed dispersal processes9,10,11 and cause tree recruitment to shift towards smaller-seeded animal-dispersed and abiotically dispersed species12,13,14,15. Declines of large vertebrate frugivores can result in reductions of up to 60% in the abundance of tree species that depend on them for seed dispersal16, with resultant declines of over 25% in average seed sizes of adult tree communities13. With tropical forests representing one of the largest terrestrial carbon pools and playing a critical role in regulating global climate17,18, understanding whether and how such defaunation-driven declines in large-seeded species can affect carbon storage in tropical forests across the globe is critical19,20.
The consequences of defaunation-driven shifts in tree community composition for carbon stocks will depend on how small-seeded and abiotically dispersed species differ from large-seeded animal-dispersed species in their potential to store carbon19. Recent work from Amazonian and Atlantic forests suggest that defaunation has the potential to drive aboveground carbon losses through shifts towards tree communities with less-dense wood because small-seeded animal-dispersed species in Neotropical forests tend to have lower wood densities than larger-seeded species19,20. However, whether defaunation has similar effects on the carbon storage potential of other tropical forest communities that have different floristic compositions, and the potential mechanisms underlying such effects at the global scale, remain unknown.
Here, we present a pan-tropical assessment of the potential effects of defaunation on aboveground carbon storage by simulating extirpations of large-seeded animal-dispersed species from 10 relatively undisturbed tropical forest tree communities spanning four continents. These sites span a broad range of floristic types and form a gradient in the prevalence of animal-mediated seed dispersal from highest in tropical Africa, India and the Americas, to lowest in the more wind-dispersed assemblages of Australia and Southeast Asia. Our data set includes stem measurements and functional traits of over 25,000 trees of 2,500 species representing at least 785 genera and 155 families.
We examined the potential effects of defaunation on aboveground carbon storage by simulating declines in relative abundances of large-seeded animal-dispersed species within tree communities at each site. In our simulations, where we held the total basal area of each site constant, we removed individuals of large-seeded animal-dispersed species and replaced the lost basal area through a random draw of individuals from the remaining pool of individuals within each community21 (Methods section). We simulated four levels of defaunation-driven losses of large-seeded animal-dispersed species by removing 25, 50, 75 and 100% of these individuals from each of our sites. This, on average, reduced community-weighted seed size of animal-dispersed species across sites by 6, 14, 23 and 33%, respectively. Aboveground carbon stocks of the original and simulated communities were then estimated using data on tree diameters and species wood density in a general biomass equation for tropical forest trees22.
In addition to the above simulations, we also simulated two control scenarios. First, because natural tree communities typically contain far greater numbers of smaller trees than larger individuals, removal of large individuals followed by replacement using random draw from the remaining pool to make up original basal areas, as in our simulations, can reduce carbon stocks simply as a result of larger individuals being replaced by multiple smaller individuals. To distinguish the effects of losing individuals of large-seeded species from such random ‘sampling’ effects, we also simulated a set of ‘individual-based’ control scenarios in which equal numbers of individuals as those lost from defaunation scenarios were removed at random from original tree communities. The lost basal areas were replaced through random draw of individuals from the remaining pool, as was done in the defaunation scenarios. Second, removing individuals can sometimes lead to incidental species extinctions and reduce overall species richness, which in turn, can reduce the carbon storage potential of forest stands21. To distinguish the effects of defaunation-driven losses of large-seeded species from those of random species loss per se, we also simulated a second set of ‘species-based’ control scenarios in which equal numbers of species as those lost in the defaunation scenarios were removed based on random selection from the overall pool of species, and lost basal areas replaced through random selection of individuals from the remaining pool (Methods section).
Our simulations of declines in large-seeded species in tropical forests across four continents suggest that (i) defaunation effects on aboveground carbon storage are likely to differ between regions, contingent on floristic composition. Carbon losses are expected in forests of the Americas, Africa and South Asia where tree communities are dominated by animal-dispersed species, but not in forests of Southeast Asia and Australia where large, abiotically dispersed species are more prevalent; (ii) at the pan-tropical scale, changes in aboveground carbon storage are driven by changes in stand volume rather than wood density; (iii) shifts in carbon storage following defaunation are underlain by globally consistent relationships between species’ dispersal mode, seed size and potential adult size, wherein large-seeded animal-dispersed species attain larger adult sizes and therefore have more volume as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. As a growing proportion of tropical forests are facing defauntion due to hunting, fragmentation, logging and other anthropogenic disturbances, conserving large tree species and their seed dispersers will be important for climate regulation.

Results

Defaunation scenarios and aboveground carbon storage

Simulated losses of large-seeded, animal-dispersed tree species decreased estimated aboveground carbon stocks by up to 5% under the 50% removal scenario (half of the individuals of large-seeded species lost from communities), and by as much as 12% under the 100% removal scenario, that is, complete extirpation of all large-seeded animal-dispersed species in communities (Fig. 1Supplementary Tables 1 and 2). In contrast, carbon storage was largely unaffected in the individual- and species-based control scenarios, with shifts in carbon stocks ranging between −0.4% and +0.1% at the highest extirpation levels across the 10 sites (Supplementary Fig. 1Supplementary Tables 1 and 2), suggesting that changes in carbon stocks in the defaunation scenarios were indeed primarily driven by reductions of large-seeded animal-dispersed tree species. Overall, simulated losses of large-seeded species reduced carbon stocks in the African, Indian and American tree communities, which had relatively high abundances (>80% of all individuals) of animal-dispersed species (Fig. 1 and Supplementary Table 1). Aboveground carbon stocks in these communities decreased by 1–5% under the 50% removal scenario, and by 2–12% under the 100% extirpation scenario (Fig. 1 and Supplementary Table 1). In Australia and Southeast Asia, where abundances of animal-dispersed tree species are lower (<75 a="" all="" carbon="" data-track-action="figure anchor" data-track-label="link" data-track="click" decreased="" either="" href="https://www.nature.com/articles/ncomms11351#f1" increased="" individuals="" marginally="" of="" or="" stocks="" style="background-color: transparent; color: #006699; text-decoration-line: none; vertical-align: baseline;">Fig. 1